CGAL 4.7 - 2D and 3D Linear Geometry Kernel
Kernel::ComputeSquaredRadius_3 Concept Reference

## Definition

Refines:
AdaptableFunctor (with one argument)
See Also
CGAL::Sphere_3<Kernel>
CGAL::Circle_3<Kernel>
CGAL::squared_radius()

## Operations

A model of this concept must provide:

Kernel::FT operator() (const Kernel::Sphere_3 &s)
returns the squared radius of s.

Kernel::FT operator() (const Kernel::Circle_3 &c)
returns the squared radius of c.

Kernel::FT operator() (const Kernel::Point_3 &p, const Kernel::Point_3 &q, const Kernel::Point_3 &r, const Kernel::Point_3 &s)
returns the squared radius of the sphere passing through p, q, r and s. More...

Kernel::FT operator() (const Kernel::Point_3 &p, const Kernel::Point_3 &q, const Kernel::Point_3 &r)
returns the squared radius of the sphere passing through p, q and r, and whose center is in the plane defined by these three points.

Kernel::FT operator() (const Kernel::Point_3 &p, const Kernel::Point_3 &q)
returns the squared radius of the smallest circle passing through p, and q, i.e. one fourth of the squared distance between p and q.

Kernel::FT operator() (const Kernel::Point_3 &p)
returns the squared radius of the smallest circle passing through p, i.e. $$0$$.

## Member Function Documentation

 Kernel::FT Kernel::ComputeSquaredRadius_3::operator() ( const Kernel::Point_3 & p, const Kernel::Point_3 & q, const Kernel::Point_3 & r, const Kernel::Point_3 & s )

returns the squared radius of the sphere passing through p, q, r and s.

Precondition
p, q, r and s are not coplanar.