CGAL 5.6 - Geometric Object Generators
|
#include <CGAL/point_generators_3.h>
The class Random_points_in_tetrahedron_3
is an input iterator creating points uniformly distributed inside a tetrahedron.
The default Creator
is Creator_uniform_3<Kernel_traits<Point_3>Kernel::RT,Point_3>
.
CGAL::Random_points_on_segment_3<Point_3, Creator>
CGAL::Random_points_in_cube_3<Point_3, Creator>
CGAL::Random_points_in_triangle_3<Point_3, Creator>
CGAL::Random_points_on_sphere_3<Point_3, Creator>
Types | |
typedef std::input_iterator_tag | iterator_category |
typedef Point_3 | value_type |
typedef std::ptrdiff_t | difference_type |
const typedef Point_3 * | pointer |
const typedef Point_3 & | reference |
Random_points_in_tetrahedron_3 (Point_3 &p, Point_3 &q, Point_3 &r, Point_3 &s, Random &rnd=get_default_random()) | |
Creates an input iterator g generating points of type Point_3 uniformly distributed inside the tetrahedron with vertices \( p, q, r \) and \( s \), i.e., \(*g = \alpha p + \beta q + \gamma r + \delta s \), for some \( \alpha, \beta, \gamma, \delta \in [0, 1] \) and \( \alpha + \beta + \gamma + \delta = 1 \). More... | |
Random_points_in_tetrahedron_3 (Tetrahedron_3 &t, Random &rnd=get_default_random()) | |
Creates an input iterator g generating points of type Point_3 uniformly distributed inside a tetrahedron \(t\) with vertices \( p, q, r \) and \( s \), i.e., \(*g = \alpha p + \beta q + \gamma r + \delta s \), for some \( \alpha, \beta, \gamma, \delta \in [0, 1] \) and \( \alpha + \beta + \gamma + \delta = 1 \). More... | |
CGAL::Random_points_in_tetrahedron_3< Point_3, Creator >::Random_points_in_tetrahedron_3 | ( | Point_3 & | p, |
Point_3 & | q, | ||
Point_3 & | r, | ||
Point_3 & | s, | ||
Random & | rnd = get_default_random() |
||
) |
Creates an input iterator g
generating points of type Point_3
uniformly distributed inside the tetrahedron with vertices \( p, q, r \) and \( s \), i.e., \(*g = \alpha p + \beta q + \gamma r + \delta s \), for some \( \alpha, \beta, \gamma, \delta \in [0, 1] \) and \( \alpha + \beta + \gamma + \delta = 1 \).
Three random numbers are needed from rnd
for each point.
CGAL::Random_points_in_tetrahedron_3< Point_3, Creator >::Random_points_in_tetrahedron_3 | ( | Tetrahedron_3 & | t, |
Random & | rnd = get_default_random() |
||
) |
Creates an input iterator g
generating points of type Point_3
uniformly distributed inside a tetrahedron \(t\) with vertices \( p, q, r \) and \( s \), i.e., \(*g = \alpha p + \beta q + \gamma r + \delta s \), for some \( \alpha, \beta, \gamma, \delta \in [0, 1] \) and \( \alpha + \beta + \gamma + \delta = 1 \).
Three random numbers are needed from rnd
for each point.