CGAL 5.6 - Geometric Object Generators
CGAL::Random_points_in_triangle_3< Point_3, Creator > Class Template Reference

#include <CGAL/point_generators_3.h>

Definition

Types

typedef std::input_iterator_tag iterator_category
 
typedef Point_3 value_type
 
typedef std::ptrdiff_t difference_type
 
const typedef Point_3pointer
 
const typedef Point_3reference
 
 Random_points_in_triangle_3 (Point_3 &p, Point_3 &q, Point_3 &r, Random &rnd=get_default_random())
 Creates an input iterator g generating points of type Point_3 uniformly distributed inside the 3D triangle with vertices \( p, q \) and \( r \), i.e., \(*g = \alpha p + \beta q + \gamma r \), for some \( \alpha, \beta, \gamma \in [0, 1] \) and \( \alpha + \beta + \gamma = 1 \). More...
 
 Random_points_in_triangle_3 (Triangle_3 &t, Random &rnd=get_default_random())
 Creates an input iterator g generating points of type Point_3 uniformly distributed inside a 3D triangle \(t\) with vertices \( p, q \) and \( r \), i.e., \(*g = \alpha p + \beta q + \gamma r \), for some \( \alpha, \beta, \gamma \in [0, 1] \) and \( \alpha + \beta + \gamma = 1 \). More...
 

Constructor & Destructor Documentation

◆ Random_points_in_triangle_3() [1/2]

template<typename Point_3 , typename Creator >
CGAL::Random_points_in_triangle_3< Point_3, Creator >::Random_points_in_triangle_3 ( Point_3 p,
Point_3 q,
Point_3 r,
Random rnd = get_default_random() 
)

Creates an input iterator g generating points of type Point_3 uniformly distributed inside the 3D triangle with vertices \( p, q \) and \( r \), i.e., \(*g = \alpha p + \beta q + \gamma r \), for some \( \alpha, \beta, \gamma \in [0, 1] \) and \( \alpha + \beta + \gamma = 1 \).

Two random numbers are needed from rnd for each point.

◆ Random_points_in_triangle_3() [2/2]

template<typename Point_3 , typename Creator >
CGAL::Random_points_in_triangle_3< Point_3, Creator >::Random_points_in_triangle_3 ( Triangle_3 t,
Random rnd = get_default_random() 
)

Creates an input iterator g generating points of type Point_3 uniformly distributed inside a 3D triangle \(t\) with vertices \( p, q \) and \( r \), i.e., \(*g = \alpha p + \beta q + \gamma r \), for some \( \alpha, \beta, \gamma \in [0, 1] \) and \( \alpha + \beta + \gamma = 1 \).

Two random numbers are needed from rnd for each point.