 CGAL 4.14 - Inscribed Areas
Inscribed Areas Reference Michael Hoffmann and Eli Packer
This package provides algorithms for computing inscribed areas. The algorithms for computing inscribed areas are: the largest inscribed k-gon (area or perimeter) of a convex point set and the largest inscribed iso-rectangle.
Introduced in: CGAL 1.1
BibTeX: cgal:hp-ia-19a
Windows Demos: 2D Inscribed k-gon as part of Polygon demo, 2D Largest Empty Rectangle
Common Demo Dlls: dlls

Assertions

The optimization code uses infix OPTIMISATION in the assertions, e.g. defining the compiler flag CGAL_OPTIMISATION_NO_PRECONDITIONS switches precondition checking off, cf. Section Checks.

Classified Reference Pages

• CGAL::maximum_area_inscribed_k_gon_2
• CGAL::maximum_perimeter_inscribed_k_gon_2
• CGAL::extremal_polygon_2
• CGAL::Largest_empty_iso_rectangle_2<T>
• CGAL::Extremal_polygon_area_traits_2<K>
• CGAL::Extremal_polygon_perimeter_traits_2<K>
• ExtremalPolygonTraits_2
• LargestEmptyIsoRectangleTraits_2

Concepts

Classes

struct  CGAL::Extremal_polygon_area_traits_2< K >
This is an advanced class. More...

struct  CGAL::Extremal_polygon_perimeter_traits_2< K >
This is an advanced class. More...

class  CGAL::Largest_empty_iso_rectangle_2< T >
Given a set of points in the plane, the class Largest_empty_iso_rectangle_2 is a data structure that maintains an iso-rectangle with the largest area among all iso-rectangles that are inside a given bounding box( iso-rectangle), and that do not contain any point of the point set. More...

Functions

template<class RandomAccessIterator , class OutputIterator , class Traits >
OutputIterator CGAL::extremal_polygon_2 (RandomAccessIterator points_begin, RandomAccessIterator points_end, int k, OutputIterator o, const Traits &t)
computes a maximal (as specified by t) inscribed k-gon of the convex polygon described by [points_begin, points_end), writes its vertices to o and returns the past-the-end iterator of this sequence. More...

template<class RandomAccessIterator , class OutputIterator >
OutputIterator CGAL::maximum_area_inscribed_k_gon_2 (RandomAccessIterator points_begin, RandomAccessIterator points_end, int k, OutputIterator o)
computes a maximum area inscribed k-gon of the convex polygon described by [points_begin, points_end), writes its vertices to o and returns the past-the-end iterator of this sequence. More...

template<class RandomAccessIterator , class OutputIterator >
OutputIterator CGAL::maximum_perimeter_inscribed_k_gon_2 (RandomAccessIterator points_begin, RandomAccessIterator points_end, int k, OutputIterator o)
computes a maximum perimeter inscribed k-gon of the convex polygon described by [points_begin, points_end), writes its vertices to o and returns the past-the-end iterator of this sequence. More...

◆ extremal_polygon_2()

template<class RandomAccessIterator , class OutputIterator , class Traits >
 OutputIterator CGAL::extremal_polygon_2 ( RandomAccessIterator points_begin, RandomAccessIterator points_end, int k, OutputIterator o, const Traits & t )

#include <CGAL/extremal_polygon_2.h>

computes a maximal (as specified by t) inscribed k-gon of the convex polygon described by [points_begin, points_end), writes its vertices to o and returns the past-the-end iterator of this sequence.

The function extremal_polygon_2() computes a maximal k-gon that can be inscribed into a given convex polygon. The criterion for maximality and some basic operations have to be specified in an appropriate traits class parameter.

Precondition
the - at least three - points denoted by the range [points_begin, points_end) form the boundary of a convex polygon (oriented clock- or counterclockwise).
k >= t.min_k().
Template Parameters
 Traits must be a model for ExtremalPolygonTraits_2. RandomAccessIterator must be an iterator with value type Traits::Point_2. OutputIterator must accepts dereference/assignments of Traits::Point_2.
CGAL::maximum_area_inscribed_k_gon_2()
CGAL::maximum_perimeter_inscribed_k_gon_2()
ExtremalPolygonTraits_2

Implementation

The implementation uses monotone matrix search  and has a worst case running time of $$O(k \cdot n + n \cdot \log n)$$, where $$n$$ is the number of vertices in $$P$$.

◆ maximum_area_inscribed_k_gon_2()

template<class RandomAccessIterator , class OutputIterator >
 OutputIterator CGAL::maximum_area_inscribed_k_gon_2 ( RandomAccessIterator points_begin, RandomAccessIterator points_end, int k, OutputIterator o )

#include <CGAL/extremal_polygon_2.h>

computes a maximum area inscribed k-gon of the convex polygon described by [points_begin, points_end), writes its vertices to o and returns the past-the-end iterator of this sequence.

Computes a maximum area k-gon $$P_k$$ that can be inscribed into a given convex polygon $$P$$. Note that

• $$P_k$$ is not unique in general, but it can be chosen in such a way that its vertices form a subset of the vertex set of $$P$$ and
• the vertices of a maximum area k-gon, where the k vertices are to be drawn from a planar point set $$S$$, lie on the convex hull of $$S$$ i.e. a convex polygon.
Precondition
the - at least three - points denoted by the range [points_begin, points_end) form the boundary of a convex polygon (oriented clock- or counterclockwise).
k >= 3.
Template Parameters
 RandomAccessIterator must be an iterator with value type K::Point_2 where K is a model of Kernel. OutputIterator must accepts dereference/assignments of Traits::Point_2.
CGAL::maximum_perimeter_inscribed_k_gon_2()
ExtremalPolygonTraits_2
CGAL::Extremal_polygon_area_traits_2<K>
CGAL::Extremal_polygon_perimeter_traits_2<K>
CGAL::extremal_polygon_2()

Implementation

The implementation uses monotone matrix search  and has a worst case running time of $$O(k \cdot n + n \cdot \log n)$$, where $$n$$ is the number of vertices in $$P$$.

Example

The following code generates a random convex polygon p with ten vertices and computes the maximum area inscribed five-gon of p.

#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_convex_set_2.h>
#include <CGAL/extremal_polygon_2.h>
#include <iostream>
#include <vector>
typedef double FT;
typedef Kernel::Point_2 Point;
typedef std::vector<int> Index_cont;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef CGAL::Random_points_in_square_2<Point> Generator;
int main() {
int n = 10;
int k = 5;
// generate random convex polygon:
Polygon_2 p;
CGAL::random_convex_set_2(n, std::back_inserter(p), Generator(1));
std::cout << "Generated Polygon:\n" << p << std::endl;
// compute maximum area incribed k-gon of p:
Polygon_2 k_gon;
p.vertices_begin(), p.vertices_end(), k, std::back_inserter(k_gon));
std::cout << "Maximum area " << k << "-gon:\n"
<< k_gon << std::endl;
return 0;
}
Examples:
Inscribed_areas/extremal_polygon_2_area.cpp.

◆ maximum_perimeter_inscribed_k_gon_2()

template<class RandomAccessIterator , class OutputIterator >
 OutputIterator CGAL::maximum_perimeter_inscribed_k_gon_2 ( RandomAccessIterator points_begin, RandomAccessIterator points_end, int k, OutputIterator o )

#include <CGAL/extremal_polygon_2.h>

computes a maximum perimeter inscribed k-gon of the convex polygon described by [points_begin, points_end), writes its vertices to o and returns the past-the-end iterator of this sequence.

The function maximum_perimeter_inscribed_k_gon_2() computes a maximum perimeter k-gon $$P_k$$ that can be inscribed into a given convex polygon $$P$$. Note that

• $$P_k$$ is not unique in general, but it can be chosen in such a way that its vertices form a subset of the vertex set of $$P$$ and
• the vertices of a maximum perimeter k-gon, where the k vertices are to be drawn from a planar point set $$S$$, lie on the convex hull of $$S$$ i.e. a convex polygon.
Precondition
the - at least three - points denoted by the range [points_begin, points_end) form the boundary of a convex polygon (oriented clock- or counterclockwise).
k >= 2.
Template Parameters
 RandomAccessIterator must be an iterator with value type K::Point_2 where K is a model for Kernel. OutputIterator must accepts dereference/assignments of Traits::Point_2.

There must be a global function K::FT CGAL::sqrt(K::FT) defined that computes the squareroot of a number.

CGAL::maximum_area_inscribed_k_gon_2()
ExtremalPolygonTraits_2
CGAL::Extremal_polygon_area_traits_2<K>
CGAL::Extremal_polygon_perimeter_traits_2<K>
CGAL::extremal_polygon_2()

Implementation

The implementation uses monotone matrix search  and has a worst case running time of $$O(k \cdot n + n \cdot \log n)$$, where $$n$$ is the number of vertices in $$P$$.

Example

The following code generates a random convex polygon p with ten vertices and computes the maximum perimeter inscribed five-gon of p.

#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_convex_set_2.h>
#include <CGAL/extremal_polygon_2.h>
#include <iostream>
#include <vector>
typedef double FT;
typedef Kernel::Point_2 Point;
typedef std::vector<int> Index_cont;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef CGAL::Random_points_in_square_2<Point> Generator;
int main() {
int n = 10;
int k = 5;
// generate random convex polygon:
Polygon_2 p;
CGAL::random_convex_set_2(n, std::back_inserter(p), Generator(1));
std::cout << "Generated Polygon:\n" << p << std::endl;
// compute maximum perimeter incribed k-gon of p:
Polygon_2 k_gon;
p.vertices_begin(), p.vertices_end(), k, std::back_inserter(k_gon));
std::cout << "Maximum perimeter " << k << "-gon:\n"
<< k_gon << std::endl;
return 0;
}
Examples:
Inscribed_areas/extremal_polygon_2_perimeter.cpp.