CGAL 6.0  2D Conforming Triangulations and Meshes

#include <CGAL/Triangulation_conformer_2.h>
The class Triangulation_conformer_2
is an auxiliary class of Delaunay_mesher_2<CDT>
.
It permits to refine a constrained Delaunay triangulation into a conforming Delaunay or conforming Gabriel triangulation. For standard needs, consider using the global functions make_conforming_Gabriel_2()
and make_conforming_Delaunay_2()
.
CDT  must be a 2D constrained Delaunay triangulation and its geometric traits class must be a model of the concept ConformingDelaunayTriangulationTraits_2 . 
Using This Class
The constructor of the class Triangulation_conformer_2
takes a reference to a CDT
as an argument. A call to the method make_conforming_Delaunay()
or make_conforming_Gabriel()
will refine this constrained Delaunay triangulation into a conforming Delaunay or conforming Gabriel triangulation. Note that if, during the life time of the Triangulation_conformer_2
object, the triangulation is externally modified, any further call to its member methods may lead to undefined behavior. Consider reconstructing a new Triangulation_conformer_2
object if the triangulation has been modified.
The conforming methods insert points into constrained edges, thereby splitting them into several subconstraints. You have access to the initial inserted constraints if you instantiate the template parameter by a Constrained_triangulation_plus_2<CDT>
.
Creation  
Triangulation_conformer_2 (CDT &t)  
Create a new conforming maker, working on t .  
Conforming methods  
void  make_conforming_Delaunay () 
Refines the triangulation into a conforming Delaunay triangulation.  
void  make_conforming_Gabriel () 
Refines the triangulation into a conforming Gabriel triangulation.  
Step by Step Operations  
The They exist in two versions, depending on whether you want the triangulation to be conforming Delaunay or conforming Gabriel, respectively. Any call to a  
void  init_Delaunay () 
The method must be called after all points and constrained segments are inserted and before any call to the following methods.  
bool  step_by_step_conforming_Delaunay () 
Applies one step of the algorithm, by inserting one point, if the algorithm is not done.  
void  init_Gabriel () 
Analog to init_Delaunay for Gabriel conforming.  
bool  step_by_step_conforming_Gabriel () 
Analog to step_by_step_conforming_Delaunay() for Gabriel conforming.  
bool  is_conforming_done () 
Tests if the step by step conforming algorithm is done.  
void CGAL::Triangulation_conformer_2< CDT >::init_Delaunay  (  ) 
The method must be called after all points and constrained segments are inserted and before any call to the following methods.
If some points or segments are then inserted in the triangulation, this method must be called again.
bool CGAL::Triangulation_conformer_2< CDT >::is_conforming_done  (  ) 
Tests if the step by step conforming algorithm is done.
If it returns true
, the following calls to step_by_step_conforming_XX
will not insert any points, until some new constrained segments or points are inserted in the triangulation and init_XX
is called again.
void CGAL::Triangulation_conformer_2< CDT >::make_conforming_Delaunay  (  ) 
Refines the triangulation into a conforming Delaunay triangulation.
After a call to this method, all triangles fulfill the Delaunay property, that is the empty circle property.
void CGAL::Triangulation_conformer_2< CDT >::make_conforming_Gabriel  (  ) 
Refines the triangulation into a conforming Gabriel triangulation.
After a call to this method, all constrained edges \( e\) have the Gabriel property: the circle with diameter \( e\) does not contain any vertex of the triangulation.
bool CGAL::Triangulation_conformer_2< CDT >::step_by_step_conforming_Delaunay  (  ) 
Applies one step of the algorithm, by inserting one point, if the algorithm is not done.
Returns false
iff no point has been inserted because the algorithm is done.