-
If the domain is a model of
MeshDomainWithFeatures_3
, 0 and 1-dimensional features can be taken into account while generating the mesh. The following two named parameters control this option: -
Default:
parameters::features(domain)
CGAL 6.0.1 - 3D Periodic Mesh Generation
|
The two main functions to generate a periodic mesh are make_periodic_3_mesh_3()
and refine_periodic_3_mesh_3()
.
Other functions are provided to optimize an existing periodic mesh.
Functions | |
template<typename C3T3 , typename MeshDomain , typename MeshCriteria , typename NamedParameters = CGAL::parameters::Default_named_parameters> | |
C3T3 | CGAL::make_periodic_3_mesh_3 (const MeshDomain &domain, const MeshCriteria &criteria, const NamedParameters &np=parameters::default_values()) |
The function make_periodic_3_mesh_3() is a 3D periodic mesh generator. | |
template<typename C3T3 , typename MeshDomain , typename MeshCriteria , typename NamedParameters = CGAL::parameters::Default_named_parameters> | |
void | CGAL::refine_periodic_3_mesh_3 (C3T3 &c3t3, const MeshDomain &domain, const MeshCriteria &criteria, const NamedParameters &np=parameters::default_values()) |
The function refine_periodic_3_mesh_3() is a 3D periodic mesh generator. | |
template<typename C3T3 , typename MeshDomain , typename NamedParameters = CGAL::parameters::Default_named_parameters> | |
Mesh_optimization_return_code | CGAL::perturb_periodic_3_mesh_3 (C3T3 &c3t3, const MeshDomain &domain, const NamedParameters &np=parameters::default_values()) |
The function perturb_periodic_3_mesh_3() is a mesh optimizer that improves the quality of a Delaunay mesh by changing the positions of some vertices of the mesh. | |
template<typename C3T3 , typename NamedParameters = CGAL::parameters::Default_named_parameters> | |
Mesh_optimization_return_code | CGAL::exude_periodic_3_mesh_3 (C3T3 &c3t3, const NamedParameters &np=parameters::default_values()) |
The function exude_periodic_3_mesh_3() performs a sliver exudation process on a periodic Delaunay mesh. | |
template<typename C3T3 , typename MeshDomain , typename NamedParameters = CGAL::parameters::Default_named_parameters> | |
Mesh_optimization_return_code | CGAL::odt_optimize_periodic_3_mesh_3 (C3T3 &c3t3, const MeshDomain &domain, const NamedParameters &np=parameters::default_values()) |
The function odt_optimize_periodic_3_mesh_3() is a periodic mesh optimization process based on the minimization of a global energy function. | |
template<typename C3T3 , typename MeshDomain , typename NamedParameters = CGAL::parameters::Default_named_parameters> | |
Mesh_optimization_return_code | CGAL::lloyd_optimize_periodic_3_mesh_3 (C3T3 &c3t3, const MeshDomain &domain, const NamedParameters &np=parameters::default_values()) |
The function lloyd_optimize_periodic_3_mesh_3() is a periodic mesh optimization process based on the minimization of a global energy function. | |
Mesh_optimization_return_code CGAL::exude_periodic_3_mesh_3 | ( | C3T3 & | c3t3, |
const NamedParameters & | np = parameters::default_values() |
||
) |
#include <CGAL/optimize_periodic_3_mesh_3.h>
The function exude_periodic_3_mesh_3()
performs a sliver exudation process on a periodic Delaunay mesh.
The sliver exudation process consists in optimizing the weights of vertices of the periodic weighted Delaunay triangulation in such a way that slivers disappear and the quality of the mesh improves.
This function directly calls exude_mesh_3()
, but is provided for convenience. Further information can be found in the documentation of the function exude_mesh_3()
.
Mesh_optimization_return_code CGAL::lloyd_optimize_periodic_3_mesh_3 | ( | C3T3 & | c3t3, |
const MeshDomain & | domain, | ||
const NamedParameters & | np = parameters::default_values() |
||
) |
#include <CGAL/optimize_periodic_3_mesh_3.h>
The function lloyd_optimize_periodic_3_mesh_3()
is a periodic mesh optimization process based on the minimization of a global energy function.
This function directly calls lloyd_optimize_mesh_3()
, but is provided for convenience. Further information can be found in the documentation of the function lloyd_optimize_mesh_3()
.
C3T3 CGAL::make_periodic_3_mesh_3 | ( | const MeshDomain & | domain, |
const MeshCriteria & | criteria, | ||
const NamedParameters & | np = parameters::default_values() |
||
) |
#include <CGAL/make_periodic_3_mesh_3.h>
The function make_periodic_3_mesh_3()
is a 3D periodic mesh generator.
It produces simplicial meshes which discretize 3D periodic domains. The periodic mesh generation algorithm is a Delaunay refinement process followed by an optimization phase. The criteria driving the Delaunay refinement process may be tuned to achieve the user needs with respect to the size of mesh elements, the accuracy of boundaries approximation, etc. The optimization phase is a sequence of optimization processes, amongst the following available optimizers: an ODT-smoothing, a Lloyd smoothing, a sliver perturber, and a sliver exuder. Each optimization process can be activated or not, according to the user requirements and available time. By default, only the perturber and the exuder are activated. Note that the benefits of the exuder will be lost if the mesh is further refined afterward, and that ODT-smoothing, Lloyd-smoothing, and sliver perturber should never be called after the sliver exuder. In the case of further refinement, only the sliver exuder can be used. The function outputs the mesh to an object which provides iterators to traverse the resulting mesh data structure or can be written to a file (see Examples ).
C3T3 | is required to be a model of the concept MeshComplex_3InTriangulation_3 . This is the return type. The type C3T3 is in particular required to provide a nested type C3T3::Triangulation for the 3D triangulation embedding the mesh. The vertex and cell base classes of the triangulation C3T3::Triangulation are required to be models of the concepts MeshVertexBase_3 and MeshCellBase_3 respectively. |
MD | is required to be a model of the concept MeshDomain_3 , or of the refined concept MeshDomainWithFeatures_3 if the domain has corners and curves that need to be accurately represented in the mesh. The argument domain is the sole link through which the domain to be discretized is known by the mesh generation algorithm. |
MC | has to be a model of the concept MeshCriteria_3 , or a model of the refined concept MeshCriteriaWithFeatures_3 if the domain has exposed features. The argument criteria of type MC specifies the size and shape requirements for mesh tetrahedra and surface facets. These criteria form the rules which drive the refinement process. All mesh elements satisfy those criteria at the end of the refinement process. In addition, if the domain has features, the argument criteria provides a sizing field to guide the discretization of 1-dimensional exposed features. |
NamedParameters | a sequence of Named Parameters |
domain | the domain to be discretized |
criteria | the criteria |
np | an optional sequence of Named Parameters among the ones listed below: |
| |
| |
| |
| |
| |
|
The optimization parameters can be passed in an arbitrary order. If one parameter is not passed, its default value is used. The default values are no_lloyd()
, no_odt()
, perturb()
and exude()
.
Note that regardless of which optimization processes are activated, they are always launched in the order that is a suborder of the following (see user manual for further details): ODT-smoother, Lloyd-smoother, perturber, and exuder.
Beware that optimization of the mesh is obtained by perturbing mesh vertices and modifying the mesh connectivity and that this has an impact on the strict compliance to the refinement criteria. Though a strict compliance to mesh criteria is guaranteed at the end of the Delaunay refinement, this may no longer be true after some optimization processes. Also beware that the default behavior does involve some optimization processes.
Mesh_optimization_return_code CGAL::odt_optimize_periodic_3_mesh_3 | ( | C3T3 & | c3t3, |
const MeshDomain & | domain, | ||
const NamedParameters & | np = parameters::default_values() |
||
) |
#include <CGAL/optimize_periodic_3_mesh_3.h>
The function odt_optimize_periodic_3_mesh_3()
is a periodic mesh optimization process based on the minimization of a global energy function.
This function directly calls odt_optimize_mesh_3()
, but is provided for convenience. Further information can be found in the documentation of the function odt_optimize_mesh_3()
.
Mesh_optimization_return_code CGAL::perturb_periodic_3_mesh_3 | ( | C3T3 & | c3t3, |
const MeshDomain & | domain, | ||
const NamedParameters & | np = parameters::default_values() |
||
) |
#include <CGAL/optimize_periodic_3_mesh_3.h>
The function perturb_periodic_3_mesh_3()
is a mesh optimizer that improves the quality of a Delaunay mesh by changing the positions of some vertices of the mesh.
This function directly calls perturb_mesh_3()
, but is provided for convenience. Further information can be found in the documentation of the function perturb_mesh_3()
.
void CGAL::refine_periodic_3_mesh_3 | ( | C3T3 & | c3t3, |
const MeshDomain & | domain, | ||
const MeshCriteria & | criteria, | ||
const NamedParameters & | np = parameters::default_values() |
||
) |
#include <CGAL/refine_periodic_3_mesh_3.h>
The function refine_periodic_3_mesh_3()
is a 3D periodic mesh generator.
It produces periodic simplicial meshes which discretize 3D periodic domains.
The periodic mesh generation algorithm is a Delaunay refinement process followed by an optimization phase. The criteria driving the Delaunay refinement process may be tuned to achieve the user needs with respect to the size of mesh elements, the accuracy of boundaries approximation, etc.
The optimization phase is a sequence of optimization processes, amongst the following available optimizers: an ODT-smoothing, a Lloyd smoothing, a sliver perturber, and a sliver exuder. Each optimization process can be activated or not, according to the user requirements and available time. By default, only the perturber and the exuder are activated. Note that the benefits of the exuder will be lost if the mesh is further refined afterward.
refine_periodic_3_mesh_3()
may be used to refine a previously computed mesh, e.g.: refine_periodic_3_mesh_3
. The underlying triangulation of a mesh complex obtained through make_periodic_3_mesh_3()
or refine_periodic_3_mesh_3()
will always satisfy this condition.C3T3 | is required to be a model of the concept MeshComplex_3InTriangulation_3 . The argument c3t3 is passed by reference as this object is modified by the refinement process. As the refinement process only adds points to the triangulation, all vertices of the triangulation of c3t3 remain in the mesh during the refinement process. Object c3t3 can be used to insert specific points in the domain to ensure that they will be contained in the final triangulation. The type C3T3 is in particular required to provide a nested type C3T3::Triangulation for the 3D triangulation embedding the mesh. The vertex and cell base classes of the triangulation C3T3::Triangulation are required to be models of the concepts MeshVertexBase_3 and MeshCellBase_3 respectively. |
MD | is required to be a model of the concept Periodic_3MeshDomain_3 or of the refined concept Periodic_3MeshDomainWithFeatures_3 if 0 and 1-dimensional features of the input complex have to be accurately represented in the mesh. The argument domain is the sole link through which the domain to be discretized is known by the mesh generation algorithm. |
MC | is required to be a model of the concept MeshCriteria_3 , or a model of the refined concept MeshCriteriaWithFeatures_3 if the domain has exposed features. The argument criteria of type MC specifies the size and shape requirements for mesh tetrahedra and surface facets. These criteria form the rules which drive the refinement process. All mesh elements satisfy those criteria at the end of the refinement process. In addition, if the domain has features, the argument criteria provides a sizing field to guide the discretization of 1-dimensional exposed features. |
NamedParameters | a sequence of Named Parameters |
c3t3 | the mesh to be refined. |
domain | the domain to be discretized |
criteria | the criteria |
np | an optional sequence of Named Parameters among the ones listed below: |
The following four parameters are optional optimization parameters. They control which optimization processes are performed and allow the user to tune the parameters of the optimization processes. Individual optimization parameters are not described here as they are internal types (see instead the documentation page of each optimizer). For each optimization algorithm, there exist two global functions that allow to enable or disable the optimizer:
| |
| |
| |
| |
|
The optimization parameters can be passed in arbitrary order. If one parameter is not passed, its default value is used. The default values are no_lloyd()
, no_odt()
, perturb()
and exude()
. Note that whatever may be the optimization processes activated, they are always launched in the order that is a suborder of the following (see user manual for further details): ODT-smoother, Lloyd-smoother, perturber, and exuder.
Beware that optimization of the mesh is obtained by perturbing mesh vertices and modifying the mesh connectivity and that this has an impact on the strict compliance to the refinement criteria. Though a strict compliance to mesh criteria is guaranteed at the end of the Delaunay refinement, this may no longer be true after some optimization processes. Also beware that the default behavior does involve some optimization processes.