CGAL 6.0.1 - CGAL and Solvers
|
A concept that describes the set of methods used to define and solve a quadratic programming (qp
) problem of the general form:
\begin{eqnarray*} & \mbox{minimize} & \frac{1}{2}\mathbf{x}^{T}P\mathbf{x} + \mathbf{q}^{T}\mathbf{x} + r \\ & \mbox{subject to} & \mathbf{l} \leq A\mathbf{x} \leq \mathbf{u} \end{eqnarray*}
in \( n \) real variables \( \mathbf{x} = (x_0, \ldots, x_{n-1}) \) and \( m \) constraints.
Here,
CGAL::OSQP_quadratic_program_traits<T>
Memory | |
void | resize (const std::size_t n, const std::size_t m) |
Allocates memory for n variables and m constraints in qp . | |
Solution | |
template<typename OutIterator > | |
bool | solve (OutIterator solution) |
solves the quadratic program. | |
bool QuadraticProgramTraits::solve | ( | OutIterator | solution | ) |
solves the quadratic program.
Number of values in solution
equals to the number n
of values in the vector x
.
OutIterator | a model of OutputIterator that accepts values of type FieldNumberType |
solution | an output iterator with the solution |
success == true