IntegralDomainWithoutDivision

Definition

This is the most basic concept for algebraic structures considered within CGAL.

A model IntegralDomainWithoutDivision represents an integral domain, i.e. commutative ring with 0, 1, +, * and unity free of zero divisors.
Note: A model is not required to offer the always well defined integral division.

It refines Assignable, CopyConstructible, DefaultConstructible and FromIntConstructible.
It refines EqualityComparable, where equality is defined w.r.t. the ring element being represented.
The operators unary and binary plus +, unary and binary minus -, multiplication * and their compound forms +=, -=, *= are required and implement the respective ring operations.

Moreover, CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision > is a model of AlgebraicStructureTraits providing:
- CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Algebraic_type derived from Integral_domain_without_division_tag
- CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Is_zero
- CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Is_one
- CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Square
- CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Simplify
- CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Unit_part

Refines

Assignable
CopyConstructible
DefaultConstructible
EqualityComparable

FromIntConstructible

Operations

IntegralDomainWithoutDivision + a unary plus
IntegralDomainWithoutDivision - a unary minus
IntegralDomainWithoutDivision a + b
IntegralDomainWithoutDivision a - b
IntegralDomainWithoutDivision a * b
IntegralDomainWithoutDivision a += b
IntegralDomainWithoutDivision a -= b
IntegralDomainWithoutDivision a *= b

Equality comparable:

result_type a == b The result_type is convertible to bool.
result_type a != b The result_type is convertible to bool.

See Also

IntegralDomainWithoutDivision
IntegralDomain
UniqueFactorizationDomain
EuclideanRing
Field
FieldWithSqrt
FieldWithKthRoot
FieldWithRootOf
AlgebraicStructureTraits