CGAL 5.6.1 - Geometric Object Generators
CGAL::Random_points_in_triangle_2< Point_2, Creator > Class Template Reference

#include <CGAL/point_generators_2.h>

Types

typedef std::input_iterator_tag iterator_category

typedef Point_2 value_type

typedef std::ptrdiff_t difference_type

const typedef Point_2pointer

const typedef Point_2reference

Random_points_in_triangle_2 (Point_2 &p, Point_2 &q, Point_2 &r, Random &rnd=get_default_random())
Creates an input iterator g generating points of type Point_2 uniformly distributed inside the triangle with vertices $$p, q$$ and $$r$$, i.e., $$*g = \alpha p + \beta q + \gamma r$$, for some $$\alpha, \beta, \gamma \in [0, 1]$$ and $$\alpha + \beta + \gamma = 1$$. More...

Random_points_in_triangle_2 (Triangle_2 &t, Random &rnd=get_default_random())
Creates an input iterator g generating points of type Point_2 uniformly distributed inside a triangle $$t$$ with vertices $$p, q$$ and $$r$$, i.e., $$*g = \alpha p + \beta q + \gamma r$$, for some $$\alpha, \beta, \gamma \in [0, 1]$$ and $$\alpha + \beta + \gamma = 1$$. More...

◆ Random_points_in_triangle_2() [1/2]

template<typename Point_2 , typename Creator >
 CGAL::Random_points_in_triangle_2< Point_2, Creator >::Random_points_in_triangle_2 ( Point_2 & p, Point_2 & q, Point_2 & r, Random & rnd = get_default_random() )

Creates an input iterator g generating points of type Point_2 uniformly distributed inside the triangle with vertices $$p, q$$ and $$r$$, i.e., $$*g = \alpha p + \beta q + \gamma r$$, for some $$\alpha, \beta, \gamma \in [0, 1]$$ and $$\alpha + \beta + \gamma = 1$$.

Two random numbers are needed from rnd for each point.

◆ Random_points_in_triangle_2() [2/2]

template<typename Point_2 , typename Creator >
 CGAL::Random_points_in_triangle_2< Point_2, Creator >::Random_points_in_triangle_2 ( Triangle_2 & t, Random & rnd = get_default_random() )

Creates an input iterator g generating points of type Point_2 uniformly distributed inside a triangle $$t$$ with vertices $$p, q$$ and $$r$$, i.e., $$*g = \alpha p + \beta q + \gamma r$$, for some $$\alpha, \beta, \gamma \in [0, 1]$$ and $$\alpha + \beta + \gamma = 1$$.

Two random numbers are needed from rnd for each point.