CGAL 5.2.2 - 2D and 3D Linear Geometry Kernel
CGAL::Triangle_3< Kernel > Class Template Reference

#include <CGAL/Triangle_3.h>


An object t of the class Triangle_3 is a triangle in the three-dimensional Euclidean space \( \E^3\).

As the triangle is not a full-dimensional object there is only a test whether a point lies on the triangle or not.

Is Model Of:


 Triangle_3 (const Point_3< Kernel > &p, const Point_3< Kernel > &q, const Point_3< Kernel > &r)
 introduces a triangle t with vertices p, q and r.


bool operator== (const Triangle_3< Kernel > &t2) const
 Test for equality: two triangles t1 and t2 are equal, iff there exists a cyclic permutation of the vertices of t2, such that they are equal to the vertices oft1`.
bool operator!= (const Triangle_3< Kernel > &t2) const
 Test for inequality.
Point_3< Kernelvertex (int i) const
 returns the i'th vertex modulo 3 of t.
Point_3< Kerneloperator[] (int i) const
 returns vertex(int i).
Plane_3< Kernelsupporting_plane ()
 returns the supporting plane of t, with same orientation.


bool is_degenerate () const
 t is degenerate if its vertices are collinear.
bool has_on (const Point_3< Kernel > &p) const
 A point is on t, if it is on a vertex, an edge or the face of t.


Kernel::FT squared_area () const
 returns a square of the area of t.
Bbox_3 bbox () const
 returns a bounding box containing t.
Triangle_3< Kerneltransform (const Aff_transformation_3< Kernel > &at) const
 returns the triangle obtained by applying at on the three vertices of t.