 CGAL 5.2.2 - 2D and 3D Linear Geometry Kernel
CGAL::Triangle_3< Kernel > Class Template Reference

#include <CGAL/Triangle_3.h>

## Definition

An object t of the class Triangle_3 is a triangle in the three-dimensional Euclidean space $$\E^3$$.

As the triangle is not a full-dimensional object there is only a test whether a point lies on the triangle or not.

Is Model Of:
Kernel::Triangle_3

## Creation

Triangle_3 (const Point_3< Kernel > &p, const Point_3< Kernel > &q, const Point_3< Kernel > &r)
introduces a triangle t with vertices p, q and r.

## Operations

bool operator== (const Triangle_3< Kernel > &t2) const
Test for equality: two triangles t1 and t2 are equal, iff there exists a cyclic permutation of the vertices of t2, such that they are equal to the vertices oft1.

bool operator!= (const Triangle_3< Kernel > &t2) const
Test for inequality.

Point_3< Kernelvertex (int i) const
returns the i'th vertex modulo 3 of t.

Point_3< Kerneloperator[] (int i) const
returns vertex(int i).

Plane_3< Kernelsupporting_plane ()
returns the supporting plane of t, with same orientation.

## Predicates

bool is_degenerate () const
t is degenerate if its vertices are collinear.

bool has_on (const Point_3< Kernel > &p) const
A point is on t, if it is on a vertex, an edge or the face of t.

## Miscellaneous

Kernel::FT squared_area () const
returns a square of the area of t.

Bbox_3 bbox () const
returns a bounding box containing t.

Triangle_3< Kerneltransform (const Aff_transformation_3< Kernel > &at) const
returns the triangle obtained by applying at on the three vertices of t`.