|
Point_d< R > | center_of_sphere (ForwardIterator first, ForwardIterator last) |
|
Point_d< R > | lift_to_paraboloid (const Point_d< R > &p) |
|
OutputIterator | linear_base (ForwardIterator first, ForwardIterator last, OutputIterator result) |
|
Point_d< R > | midpoint (const Point_d< R > &p, const Point_d< R > &q) |
|
Point_d< R > | project_along_d_axis (const Point_d< R > &p) |
|
FT | squared_distance (Point_d< R > p, Point_d< R > q) |
|
bool | do_intersect (Type1< R > obj1, Type2< R > obj2) |
|
cpp11::result_of< R::Intersect_d(Type1< R >, Type2< R >)>::type | intersection (Type1< R > f1, Type2< R > f2) |
|
bool | affinely_independent (ForwardIterator first, ForwardIterator last) |
|
int | affine_rank (ForwardIterator first, ForwardIterator last) |
|
Comparison_result | compare_lexicographically (const Point_d< R > &p, const Point_d< R > &q) |
|
bool | contained_in_affine_hull (ForwardIterator first, ForwardIterator last, const Point_d< R > &p) |
|
bool | contained_in_linear_hull (ForwardIterator first, ForwardIterator last, const Vector_d< R > &v) |
|
bool | contained_in_simplex (ForwardIterator first, ForwardIterator last, const Point_d< R > &p) |
|
bool | lexicographically_smaller (const Point_d< R > &p, const Point_d< R > &q) |
|
bool | lexicographically_smaller_or_equal (const Point_d< R > &p, const Point_d< R > &q) |
|
bool | linearly_independent (ForwardIterator first, ForwardIterator last) |
|
int | linear_rank (ForwardIterator first, ForwardIterator last) |
|
Orientation | orientation (ForwardIterator first, ForwardIterator last) |
|
Bounded_side | side_of_bounded_sphere (ForwardIterator first, ForwardIterator last, const Point_d< R > &p) |
|
Oriented_side | side_of_oriented_sphere (ForwardIterator first, ForwardIterator last, const Point_d< R > &p) |
|
OutputIterator | ch_akl_toussaint (ForwardIterator first, ForwardIterator beyond, OutputIterator result, const Traits &ch_traits=Default_traits()) |
|
OutputIterator | ch_bykat (InputIterator first, InputIterator beyond, OutputIterator result, const Traits &ch_traits=Default_traits) |
|
OutputIterator | ch_eddy (InputIterator first, InputIterator beyond, OutputIterator result, const Traits &ch_traits=Default_traits) |
|
OutputIterator | ch_graham_andrew (InputIterator first, InputIterator beyond, OutputIterator result, const Traits &ch_traits=Default_traits) |
|
OutputIterator | ch_graham_andrew_scan (BidirectionalIterator first, BidirectionalIterator beyond, OutputIterator result, const Traits &ch_traits=Default_traits) |
|
OutputIterator | ch_jarvis (InputIterator first, InputIterator beyond, OutputIterator result, const Traits &ch_traits=Default_traits) |
|
OutputIterator | ch_jarvis_march (ForwardIterator first, ForwardIterator beyond, const Traits::Point_2 &start_p, const Traits::Point_2 &stop_p, OutputIterator result, const Traits &ch_traits=Default_traits) |
|
OutputIterator | ch_melkman (InputIterator first, InputIterator last, OutputIterator result, const Traits &ch_traits=Default_traits) |
|
void | ch_e_point (ForwardIterator first, ForwardIterator beyond, ForwardIterator &e, const Traits &ch_traits=Default_traits) |
|
void | ch_n_point (ForwardIterator first, ForwardIterator beyond, ForwardIterator &n, const Traits &ch_traits=Default_traits) |
|
void | ch_ns_point (ForwardIterator first, ForwardIterator beyond, ForwardIterator &n, ForwardIterator &s, const Traits &ch_traits=Default_traits) |
|
void | ch_nswe_point (ForwardIterator first, ForwardIterator beyond, ForwardIterator &n, ForwardIterator &s, ForwardIterator &w, ForwardIterator &e, const Traits &ch_traits=Default_traits) |
|
void | ch_s_point (ForwardIterator first, ForwardIterator beyond, ForwardIterator &s, const Traits &ch_traits=Default_traits) |
|
void | ch_we_point (ForwardIterator first, ForwardIterator beyond, ForwardIterator &w, ForwardIterator &e, const Traits &ch_traits=Default_traits) |
|
void | ch_w_point (ForwardIterator first, ForwardIterator beyond, ForwardIterator &w, const Traits &ch_traits=Default_traits) |
|
OutputIterator | convex_hull_2 (InputIterator first, InputIterator beyond, OutputIterator result, const Traits &ch_traits) |
|
OutputIterator | convex_hull_2 (InputIterator first, InputIterator beyond, OutputIterator result) |
|
OutputIterator | lower_hull_points_2 (InputIterator first, InputIterator beyond, OutputIterator result, const Traits &ch_traits=Default_traits) |
|
OutputIterator | upper_hull_points_2 (InputIterator first, InputIterator beyond, OutputIterator result, const Traits &ch_traits=Default_traits) |
|
bool | is_ccw_strongly_convex_2 (ForwardIterator first, ForwardIterator beyond, const Traits &ch_traits=Default_traits) |
|
bool | is_cw_strongly_convex_2 (ForwardIterator first, ForwardIterator beyond, const Traits &ch_traits=Default_traits) |
|
void | refine_Delaunay_mesh_2 (CDT &t, const Criteria &criteria=Criteria()) |
|
void | refine_Delaunay_mesh_2 (CDT &t, InputIterator begin, InputIterator end, const Criteria &criteria=Criteria(), bool mark=false) |
|
CGAL::Mesh_optimization_return_code | lloyd_optimize_mesh_2 (CDT &cdt, double parameters::time_limit=0, std::size_t parameters::max_iteration_number=0, double parameters::convergence=0.001, double parameters::freeze_bound=0.001, PointIterator parameters::seeds_begin=PointIterator(), PointIterator parameters::seeds_end=PointIterator(), bool parameters::mark=false) |
|
void | make_conforming_Delaunay_2 (CDT &t) |
|
void | make_conforming_Gabriel_2 (CDT &t) |
|
bool | is_finite (double x) |
|
bool | is_finite (float x) |
|
bool | is_finite (long double x) |
|
OutputIterator | compute_roots_of_2 (const RT &a, const RT &b, const RT &c, OutputIterator oit) |
|
Root_of_traits< RT >::Root_of_2 | make_root_of_2 (const RT &a, const RT &b, const RT &c, bool s) |
|
Root_of_traits< RT >::Root_of_2 | make_root_of_2 (RT alpha, RT beta, RT gamma) |
|
Root_of_traits< RT >::Root_of_2 | make_sqrt (const RT &x) |
|
Rational | simplest_rational_in_interval (double d1, double d2) |
|
Rational | to_rational (double d) |
|
bool | is_valid (const T &x) |
|
T | max (const T &x, const T &y) |
|
T | min (const T &x, const T &y) |
|
NT | abs (const NT &x) |
|
result_type | compare (const NT &x, const NT &y) |
|
result_type | div (const NT1 &x, const NT2 &y) |
|
void | div_mod (const NT1 &x, const NT2 &y, result_type &q, result_type &r) |
|
result_type | gcd (const NT1 &x, const NT2 &y) |
|
result_type | integral_division (const NT1 &x, const NT2 &y) |
|
NT | inverse (const NT &x) |
|
result_type | is_negative (const NT &x) |
|
result_type | is_one (const NT &x) |
|
result_type | is_positive (const NT &x) |
|
result_type | is_square (const NT &x) |
|
result_type | is_square (const NT &x, NT &y) |
|
result_type | is_zero (const NT &x) |
|
NT | kth_root (int k, const NT &x) |
|
result_type | mod (const NT1 &x, const NT2 &y) |
|
NT | root_of (int k, InputIterator begin, InputIterator end) |
|
result_type | sign (const NT &x) |
|
void | simplify (const NT &x) |
|
NT | sqrt (const NT &x) |
|
NT | square (const NT &x) |
|
double | to_double (const NT &x) |
|
std::pair< double, double > | to_interval (const NT &x) |
|
NT | unit_part (const NT &x) |
|
bool | has_in_x_range (const Circular_arc_2< CircularKernel > &ca, const Circular_arc_point_2< CircularKernel > &p) |
|
bool | has_in_x_range (const Line_arc_2< CircularKernel > &ca, const Circular_arc_point_2< CircularKernel > &p) |
|
bool | has_on (const Circle_2< CircularKernel > &c, const Circular_arc_point_2< CircularKernel > &p) |
|
OutputIterator | make_x_monotone (const Circular_arc_2< CircularKernel > &ca, OutputIterator res) |
|
OutputIterator | make_xy_monotone (const Circular_arc_2< CircularKernel > &ca, OutputIterator res) |
|
Circular_arc_point_2< CircularKernel > | x_extremal_point (const Circle_2< CircularKernel > &c, bool b) |
|
OutputIterator | x_extremal_points (const Circle_2< CircularKernel > &c, OutputIterator res) |
|
Circular_arc_point_2< CircularKernel > | y_extremal_point (const Circle_2< CircularKernel > &c, bool b) |
|
OutputIterator | y_extremal_points (const Circle_2< CircularKernel > &c, OutputIterator res) |
|
CGAL::Comparison_result | compare_y_to_right (const Circular_arc_2< CircularKernel > &ca1, const Circular_arc_2< CircularKernel > &ca2, Circular_arc_point_2< CircularKernel > &p) |
|
CGAL::Circle_type | classify (const CGAL::Circle_3< SphericalKernel > &c, const CGAL::Sphere_3< SphericalKernel > &sphere) |
|
Comparison_result | compare_theta (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Circular_arc_point_3< SphericalKernel > &q, const CGAL::Sphere_3< SphericalKernel > &sphere) |
|
Comparison_result | compare_theta (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Vector_3< SphericalKernel > &m, const CGAL::Sphere_3< SphericalKernel > &sphere) |
|
Comparison_result | compare_theta (const CGAL::Vector_3< SphericalKernel > &m, const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Sphere_3< SphericalKernel > &sphere) |
|
bool | compare_theta_z (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Circular_arc_point_3< SphericalKernel > &q, const CGAL::Sphere_3< SphericalKernel > &sphere) |
|
bool | is_theta_monotone (const CGAL::Circular_arc_3< SphericalKernel > &a, const CGAL::Sphere_3< SphericalKernel > &sphere) |
|
CGAL::Circular_arc_point_3< SphericalKernel > | theta_extremal_point (const CGAL::Circle_3< SphericalKernel > &c, const CGAL::Sphere_3< SphericalKernel > sphere, bool b) |
|
OutputIterator | theta_extremal_points (const CGAL::Circle_3< SphericalKernel > &c, const CGAL::Sphere_3< SphericalKernel > &sphere, OutputIterator res) |
|
CGAL::Circular_arc_point_3< SphericalKernel > | x_extremal_point (const CGAL::Sphere_3< SphericalKernel > &c, bool b) |
|
CGAL::Circular_arc_point_3< SphericalKernel > | x_extremal_point (const CGAL::Circle_3< SphericalKernel > &c, bool b) |
|
OutputIterator | x_extremal_points (const CGAL::Sphere_3< SphericalKernel > &c, OutputIterator res) |
|
OutputIterator | x_extremal_points (const CGAL::Circle_3< SphericalKernel > &c, OutputIterator res) |
|
CGAL::Circular_arc_point_3< SphericalKernel > | y_extremal_point (const CGAL::Sphere_3< SphericalKernel > &c, bool b) |
|
CGAL::Circular_arc_point_3< SphericalKernel > | y_extremal_point (const CGAL::Circle_3< SphericalKernel > &c, bool b) |
|
OutputIterator | y_extremal_points (const CGAL::Sphere_3< SphericalKernel > &c, OutputIterator res) |
|
OutputIterator | y_extremal_points (const CGAL::Circle_3< SphericalKernel > &c, OutputIterator res) |
|
CGAL::Circular_arc_point_3< SphericalKernel > | z_extremal_point (const CGAL::Sphere_3< SphericalKernel > &c, bool b) |
|
CGAL::Circular_arc_point_3< SphericalKernel > | z_extremal_point (const CGAL::Circle_3< SphericalKernel > &c, bool b) |
|
OutputIterator | z_extremal_points (const CGAL::Sphere_3< SphericalKernel > &c, OutputIterator res) |
|
OutputIterator | z_extremal_points (const CGAL::Circle_3< SphericalKernel > &c, OutputIterator res) |
|
OutputIterator | copy_n (InputIterator first, Size n, OutputIterator result) |
|
std::pair< ForwardIterator, ForwardIterator > | min_max_element (ForwardIterator first, ForwardIterator last) |
|
std::pair< ForwardIterator, ForwardIterator > | min_max_element (ForwardIterator first, ForwardIterator last, CompareMin comp_min, CompareMax comp_max) |
|
BidirectionalIterator | predecessor (BidirectionalIterator it) |
|
ForwardIterator | successor (ForwardIterator it) |
|
CC_safe_handle< CC_iterator > | make_cc_safe_handle (CC_iterator iterator) |
|
Compare_to_less< F > | compare_to_less (const F &f) |
|
Iterator_range< T > | make_range (const T &b, const T &e) |
|
T | range_begin (Iterator_range< T > &x) |
|
T | range_end (Iterator_range< T > &x) |
|
T | range_begin (const Iterator_range< T > &x) |
|
T | range_end (const Iterator_range< T > &x) |
|
Failure_function | set_error_handler (Failure_function handler) |
|
Failure_function | set_warning_handler (Failure_function handler) |
|
Failure_behaviour | set_error_behaviour (Failure_behaviour eb) |
|
Failure_behaviour | set_warning_behaviour (Failure_behaviour eb) |
|
template<typename T , typename U > |
T | enum_cast (const U &u) |
| converts between the various enums provided by the CGAL kernel. More...
|
|
Oriented_side | opposite (const Oriented_side &o) |
| returns the opposite side (for example CGAL::ON_POSITIVE_SIDE if o ==CGAL::ON_NEGATIVE_SIDE ), or CGAL::ON_ORIENTED_BOUNDARY if o ==CGAL::ON_ORIENTED_BOUNDARY .
|
|
Bounded_side | opposite (const Bounded_side &o) |
| returns the opposite side (for example CGAL::ON_BOUNDED_SIDE if o ==CGAL::ON_UNBOUNDED_SIDE ), or returns CGAL::ON_BOUNDARY if o ==CGAL::ON_BOUNDARY .
|
|
bool | do_intersect (Type1< Kernel > obj1, Type2< Kernel > obj2) |
| checks whether obj1 and obj2 intersect. More...
|
|
template<typename Kernel > |
cpp11::result_of< Kernel::Intersect_23(Type1, Type2)>::type | intersection (Type1< Kernel > obj1, Type2< Kernel > obj2) |
| Two objects obj1 and obj2 intersect if there is a point p that is part of both obj1 and obj2 . More...
|
|
template<typename Kernel > |
boost::optional< boost::variant< Point_3, Line_3, Plane_3 > > | intersection (const Plane_3< Kernel > &pl1, const Plane_3< Kernel > &pl2, const Plane_3< Kernel > &pl3) |
| returns the intersection of 3 planes, which can be a point, a line, a plane, or empty.
|
|
template<typename Kernel > |
Angle | angle (const CGAL::Vector_2< Kernel > &u, const CGAL::Vector_2< Kernel > &v) |
| returns CGAL::OBTUSE , CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors u and v .
|
|
template<typename Kernel > |
Angle | angle (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
| returns CGAL::OBTUSE , CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the three points p , q , r (q being the vertex of the angle). More...
|
|
template<typename Kernel > |
Angle | angle (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &s) |
| returns CGAL::OBTUSE , CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors pq , rs . More...
|
|
template<typename Kernel > |
Angle | angle (const CGAL::Vector_3< Kernel > &u, const CGAL::Vector_3< Kernel > &v) |
| returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors u and v .
|
|
template<typename Kernel > |
Angle | angle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| returns CGAL::OBTUSE , CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the three points p , q , r (q being the vertex of the angle).
|
|
template<typename Kernel > |
Angle | angle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
| returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors pq , rs . More...
|
|
template<typename Kernel > |
Angle | angle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Vector_3< Kernel > &v) |
| returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the normal of the triangle pqr and the vector v .
|
|
template<typename Kernel > |
Kernel::FT | approximate_dihedral_angle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
| returns an approximation of the signed dihedral angle in the tetrahedron pqrs of edge pq . More...
|
|
template<typename Kernel > |
Kernel::FT | area (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
| returns the signed area of the triangle defined by the points p , q and r .
|
|
template<typename Kernel > |
bool | are_ordered_along_line (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
| returns true , iff the three points are collinear and q lies between p and r . More...
|
|
template<typename Kernel > |
bool | are_ordered_along_line (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| returns true , iff the three points are collinear and q lies between p and r . More...
|
|
template<typename Kernel > |
bool | are_strictly_ordered_along_line (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
| returns true , iff the three points are collinear and q lies strictly between p and r . More...
|
|
template<typename Kernel > |
bool | are_strictly_ordered_along_line (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| returns true , iff the three points are collinear and q lies strictly between p and r . More...
|
|
template<typename Kernel > |
CGAL::Point_2< Kernel > | barycenter (const CGAL::Point_2< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_2< Kernel > &p2) |
| compute the barycenter of the points p1 and p2 with corresponding weights w1 and 1-w1 .
|
|
template<typename Kernel > |
CGAL::Point_2< Kernel > | barycenter (const CGAL::Point_2< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_2< Kernel > &p2, const Kernel::FT &w2) |
| compute the barycenter of the points p1 and p2 with corresponding weights w1 and w2 . More...
|
|
template<typename Kernel > |
CGAL::Point_2< Kernel > | barycenter (const CGAL::Point_2< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_2< Kernel > &p2, const Kernel::FT &w2, const CGAL::Point_2< Kernel > &p3) |
| compute the barycenter of the points p1 , p2 and p3 with corresponding weights w1 , w2 and 1-w1-w2 .
|
|
template<typename Kernel > |
CGAL::Point_2< Kernel > | barycenter (const CGAL::Point_2< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_2< Kernel > &p2, const Kernel::FT &w2, const CGAL::Point_2< Kernel > &p3, const Kernel::FT &w3) |
| compute the barycenter of the points p1 , p2 and p3 with corresponding weights w1 , w2 and w3 . More...
|
|
template<typename Kernel > |
CGAL::Point_2< Kernel > | barycenter (const CGAL::Point_2< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_2< Kernel > &p2, const Kernel::FT &w2, const CGAL::Point_2< Kernel > &p3, const Kernel::FT &w3, const CGAL::Point_2< Kernel > &p4) |
| compute the barycenter of the points p1 , p2 , p3 and p4 with corresponding weights w1 , w2 , w3 and 1-w1-w2-w3 .
|
|
template<typename Kernel > |
CGAL::Point_2< Kernel > | barycenter (const CGAL::Point_2< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_2< Kernel > &p2, const Kernel::FT &w2, const CGAL::Point_2< Kernel > &p3, const Kernel::FT &w3, const CGAL::Point_2< Kernel > &p4, const Kernel::FT &w4) |
| compute the barycenter of the points p1 , p2 , p3 and p4 with corresponding weights w1 , w2 , w3 and w4 . More...
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | barycenter (const CGAL::Point_3< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_3< Kernel > &p2) |
| compute the barycenter of the points p1 and p2 with corresponding weights w1 and 1-w1 .
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | barycenter (const CGAL::Point_3< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_3< Kernel > &p2, const Kernel::FT &w2) |
| compute the barycenter of the points p1 and p2 with corresponding weights w1 and w2 . More...
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | barycenter (const CGAL::Point_3< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_3< Kernel > &p2, const Kernel::FT &w2, const CGAL::Point_3< Kernel > &p3) |
| compute the barycenter of the points p1 , p2 and p3 with corresponding weights w1 , w2 and 1-w1-w2 .
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | barycenter (const CGAL::Point_3< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_3< Kernel > &p2, const Kernel::FT &w2, const CGAL::Point_3< Kernel > &p3, const Kernel::FT &w3) |
| compute the barycenter of the points p1 , p2 and p3 with corresponding weights w1 , w2 and w3 . More...
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | barycenter (const CGAL::Point_3< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_3< Kernel > &p2, const Kernel::FT &w2, const CGAL::Point_3< Kernel > &p3, const Kernel::FT &w3, const CGAL::Point_3< Kernel > &p4) |
| compute the barycenter of the points p1 , p2 , p3 and p4 with corresponding weights w1 , w2 , w3 and 1-w1-w2-w3 .
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | barycenter (const CGAL::Point_3< Kernel > &p1, const Kernel::FT &w1, const CGAL::Point_3< Kernel > &p2, const Kernel::FT &w2, const CGAL::Point_3< Kernel > &p3, const Kernel::FT &w3, const CGAL::Point_3< Kernel > &p4, const Kernel::FT &w4) |
| compute the barycenter of the points p1 , p2 , p3 and p4 with corresponding weights w1 , w2 , w3 and w4 . More...
|
|
template<typename Kernel > |
CGAL::Line_2< Kernel > | bisector (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| constructs the bisector line of the two points p and q . More...
|
|
template<typename Kernel > |
CGAL::Line_2< Kernel > | bisector (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2) |
| constructs the bisector of the two lines l1 and l2 . More...
|
|
template<typename Kernel > |
CGAL::Plane_3< Kernel > | bisector (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| constructs the bisector plane of the two points p and q . More...
|
|
template<typename Kernel > |
CGAL::Plane_3< Kernel > | bisector (const CGAL::Plane_3< Kernel > &h1, const CGAL::Plane_3< Kernel > &h2) |
| constructs the bisector of the two planes h1 and h2 . More...
|
|
template<typename Kernel > |
CGAL::Point_2< Kernel > | centroid (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
| compute the centroid of the points p , q , and r .
|
|
template<typename Kernel > |
CGAL::Point_2< Kernel > | centroid (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &s) |
| compute the centroid of the points p , q , r , and s .
|
|
template<typename Kernel > |
CGAL::Point_2< Kernel > | centroid (const CGAL::Triangle_2< Kernel > &t) |
| compute the centroid of the triangle t .
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | centroid (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| compute the centroid of the points p , q , and r .
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | centroid (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
| compute the centroid of the points p , q , r , and s .
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | centroid (const CGAL::Triangle_3< Kernel > &t) |
| compute the centroid of the triangle t .
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | centroid (const CGAL::Tetrahedron_3< Kernel > &t) |
| compute the centroid of the tetrahedron t .
|
|
template<typename Kernel > |
CGAL::Point_2< Kernel > | circumcenter (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| compute the center of the smallest circle passing through the points p and q . More...
|
|
template<typename Kernel > |
CGAL::Point_2< Kernel > | circumcenter (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
| compute the center of the circle passing through the points p , q , and r . More...
|
|
template<typename Kernel > |
CGAL::Point_2< Kernel > | circumcenter (const CGAL::Triangle_2< Kernel > &t) |
| compute the center of the circle passing through the vertices of t . More...
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | circumcenter (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| compute the center of the smallest sphere passing through the points p and q . More...
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | circumcenter (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| compute the center of the circle passing through the points p , q , and r . More...
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | circumcenter (const CGAL::Triangle_3< Kernel > &t) |
| compute the center of the circle passing through the vertices of t . More...
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | circumcenter (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
| compute the center of the sphere passing through the points p , q , r , and s . More...
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | circumcenter (const CGAL::Tetrahedron_3< Kernel > &t) |
| compute the center of the sphere passing through the vertices of t . More...
|
|
template<typename Kernel > |
bool | collinear_are_ordered_along_line (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
| returns true , iff q lies between p and r . More...
|
|
template<typename Kernel > |
bool | collinear_are_ordered_along_line (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| returns true , iff q lies between p and r . More...
|
|
template<typename Kernel > |
bool | collinear_are_strictly_ordered_along_line (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
| returns true , iff q lies strictly between p and r . More...
|
|
template<typename Kernel > |
bool | collinear_are_strictly_ordered_along_line (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| returns true , iff q lies strictly between p and r . More...
|
|
template<typename Kernel > |
bool | collinear (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
| returns true , iff p , q , and r are collinear.
|
|
template<typename Kernel > |
bool | collinear (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| returns true , iff p , q , and r are collinear.
|
|
template<typename Kernel > |
Comparison_result | compare_dihedral_angle (const CGAL::Point_3< Kernel > &a1, const CGAL::Point_3< Kernel > &b1, const CGAL::Point_3< Kernel > &c1, const CGAL::Point_3< Kernel > &d1, const Kernel::FT &cosine) |
| compares the dihedral angles \( \theta_1\) and \( \theta_2\), where \( \theta_1\) is the dihedral angle, in \( [0, \pi]\), of the tetrahedron (a1, b1, c1, d1) at the edge (a1, b1) , and \( \theta_2\) is the angle in \( [0, \pi]\) such that \( cos(\theta_2) = cosine\). More...
|
|
template<typename Kernel > |
Comparison_result | compare_dihedral_angle (const CGAL::Point_3< Kernel > &a1, const CGAL::Point_3< Kernel > &b1, const CGAL::Point_3< Kernel > &c1, const CGAL::Point_3< Kernel > &d1, const CGAL::Point_3< Kernel > &a2, const CGAL::Point_3< Kernel > &b2, const CGAL::Point_3< Kernel > &c2, const CGAL::Point_3< Kernel > &d2) |
| compares the dihedral angles \( \theta_1\) and \( \theta_2\), where \( \theta_i\) is the dihedral angle in the tetrahedron (a_i, b_i, c_i, d_i) at the edge (a_i, b_i) . More...
|
|
template<typename Kernel > |
Comparison_result | compare_dihedral_angle (const CGAL::Vector_3< Kernel > &u1, const CGAL::Vector_3< Kernel > &v1, const CGAL::Vector_3< Kernel > &w1, const Kernel::FT &cosine) |
| compares the dihedral angles \( \theta_1\) and \( \theta_2\), where \( \theta_1\) is the dihedral angle, in \( [0, \pi]\), between the vectorial planes defined by (u_1, v_1) and (u_1, w_1) , and \( \theta_2\) is the angle in \( [0, \pi]\) such that \( cos(\theta_2) = cosine\). More...
|
|
template<typename Kernel > |
Comparison_result | compare_dihedral_angle (const CGAL::Vector_3< Kernel > &u1, const CGAL::Vector_3< Kernel > &v1, const CGAL::Vector_3< Kernel > &w1, const CGAL::Vector_3< Kernel > &u2, const CGAL::Vector_3< Kernel > &v2, const CGAL::Vector_3< Kernel > &w2) |
| compares the dihedral angles \( \theta_1\) and \( \theta_2\), where \( \theta_i\) is the dihedral angle between the vectorial planes defined by (u_i, v_i) and (u_i, w_i) . More...
|
|
template<typename Kernel > |
Comparison_result | compare_distance_to_point (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
| compares the distances of points q and r to point p . More...
|
|
template<typename Kernel > |
Comparison_result | compare_distance_to_point (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| compares the distances of points q and r to point p . More...
|
|
template<typename Kernel > |
Comparison_result | compare_lexicographically (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| Compares the Cartesian coordinates of points p and q lexicographically in \( xy\) order: first \( x\)-coordinates are compared, if they are equal, \( y\)-coordinates are compared. More...
|
|
template<typename Kernel > |
Comparison_result | compare_lexicographically (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| Compares the Cartesian coordinates of points p and q lexicographically in \( xyz\) order: first \( x\)-coordinates are compared, if they are equal, \( y\)-coordinates are compared, and if both \( x\)- and \( y\)- coordinate are equal, \( z\)-coordinates are compared. More...
|
|
template<typename Kernel > |
Comparison_result | compare_signed_distance_to_line (const CGAL::Line_2< Kernel > &l, const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| returns CGAL::LARGER iff the signed distance of p and l is larger than the signed distance of q and l , CGAL::SMALLER , iff it is smaller, and CGAL::EQUAL iff both are equal.
|
|
template<typename Kernel > |
Comparison_result | compare_signed_distance_to_line (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &s) |
| returns CGAL::LARGER iff the signed distance of r and l is larger than the signed distance of s and l , CGAL::SMALLER , iff it is smaller, and CGAL::EQUAL iff both are equal, where l is the directed line through p and q .
|
|
template<typename Kernel > |
Comparison_result | compare_signed_distance_to_plane (const CGAL::Plane_3< Kernel > &h, const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| returns CGAL::LARGER iff the signed distance of p and h is larger than the signed distance of q and h , CGAL::SMALLER , iff it is smaller, and CGAL::EQUAL iff both are equal.
|
|
template<typename Kernel > |
Comparison_result | compare_signed_distance_to_plane (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s, const CGAL::Point_3< Kernel > &t) |
| returns CGAL::LARGER iff the signed distance of s and h is larger than the signed distance of t and h , CGAL::SMALLER , iff it is smaller, and CGAL::EQUAL iff both are equal, where h is the oriented plane through p , q and r .
|
|
template<typename Kernel > |
Comparison_result | compare_slope (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2) |
| compares the slopes of the lines l1 and l2
|
|
template<typename Kernel > |
Comparison_result | compare_slope (const CGAL::Segment_2< Kernel > &s1, const CGAL::Segment_2< Kernel > &s2) |
| compares the slopes of the segments s1 and s2 , where the slope is the variation of the y -coordinate from the left to the right endpoint of the segments.
|
|
template<typename Kernel > |
Comparison_result | compare_slope (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
| compares the slopes of the segments (p,q) and (r,s) , where the slope is the variation of the z -coordinate from the first to the second point of the segment divided by the length of the segment.
|
|
template<typename Kernel > |
Comparison_result | compare_squared_distance (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const typename Kernel::FT &d2) |
| compares the squared distance of points p and q to d2 .
|
|
template<typename Kernel > |
Comparison_result | compare_squared_distance (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const typename Kernel::FT &d2) |
| compares the squared distance of points p and q to d2 .
|
|
template<typename Kernel > |
Comparison_result | compare_squared_radius (const CGAL::Point_3< Kernel > &p, const typename Kernel::FT &sr) |
| compares the squared radius of the sphere of radius 0 centered at p to sr . More...
|
|
template<typename Kernel > |
Comparison_result | compare_squared_radius (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const typename Kernel::FT &sr) |
| compares the squared radius of the sphere defined by the points p and q to sr .
|
|
template<typename Kernel > |
Comparison_result | compare_squared_radius (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const typename Kernel::FT &sr) |
| compares the squared radius of the sphere defined by the points p , q , and r to sr .
|
|
template<typename Kernel > |
Comparison_result | compare_squared_radius (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s, const typename Kernel::FT &sr) |
| compares the squared radius of the sphere defined by the points p , q , r , and r to sr .
|
|
template<typename Kernel > |
Comparison_result | compare_x (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| compares the \( x\)-coordinates of p and q .
|
|
template<typename Kernel > |
Comparison_result | compare_x (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| compares the \( x\)-coordinates of p and q .
|
|
template<typename Kernel > |
Comparison_result | compare_x (const CGAL::Point_2< Kernel > &p, const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2) |
| compares the \( x\)-coordinates of p and the intersection of lines l1 and l2 . More...
|
|
template<typename Kernel > |
Comparison_result | compare_x (const CGAL::Line_2< Kernel > &l, const CGAL::Line_2< Kernel > &h1, const CGAL::Line_2< Kernel > &h2) |
| compares the \( x\)-coordinates of the intersection of line l with line h1 and with line h2 . More...
|
|
template<typename Kernel > |
Comparison_result | compare_x (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2, const CGAL::Line_2< Kernel > &h1, const CGAL::Line_2< Kernel > &h2) |
| compares the \( x\)-coordinates of the intersection of lines l1 and l2 and the intersection of lines h1 and h2 . More...
|
|
template<typename CircularKernel > |
Comparison_result | compare_x (const CGAL::Circular_arc_point_2< CircularKernel > &p, const CGAL::Circular_arc_point_2< CircularKernel > &q) |
| compares the \( x\)-coordinates of p and q .
|
|
template<typename CircularKernel > |
Comparison_result | compare_x (const CGAL::Circular_arc_point_2< CircularKernel > &p, const CGAL::Point_2< CircularKernel > &q) |
| compares the \( x\)-coordinates of p and q .
|
|
template<typename SphericalKernel > |
Comparison_result | compare_x (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Circular_arc_point_3< SphericalKernel > &q) |
| compares the \( x\)-coordinates of p and q .
|
|
template<typename SphericalKernel > |
Comparison_result | compare_x (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Point_3< SphericalKernel > &q) |
| compares the \( x\)-coordinates of p and q .
|
|
template<typename Kernel > |
Comparison_result | compare_xy (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| Compares the Cartesian coordinates of points p and q lexicographically in \( xy\) order: first \( x\)-coordinates are compared, if they are equal, \( y\)-coordinates are compared.
|
|
template<typename Kernel > |
Comparison_result | compare_xy (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| Compares the Cartesian coordinates of points p and q lexicographically in \( xy\) order: first \( x\)-coordinates are compared, if they are equal, \( y\)-coordinates are compared.
|
|
template<typename CircularKernel > |
Comparison_result | compare_xy (const CGAL::Circular_arc_point_2< CircularKernel > &p, const CGAL::Circular_arc_point_2< CircularKernel > &q) |
| Compares the \( x\) and \( y\) Cartesian coordinates of points p and q lexicographically.
|
|
template<typename CircularKernel > |
Comparison_result | compare_xy (const CGAL::Circular_arc_point_2< CircularKernel > &p, const CGAL::Point_2< CircularKernel > &q) |
| Compares the \( x\) and \( y\) Cartesian coordinates of points p and q lexicographically.
|
|
template<typename SphericalKernel > |
Comparison_result | compare_xy (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Circular_arc_point_3< SphericalKernel > &q) |
| Compares the \( x\) and \( y\) Cartesian coordinates of points p and q lexicographically.
|
|
template<typename SphericalKernel > |
Comparison_result | compare_xy (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Point_3< SphericalKernel > &q) |
| Compares the \( x\) and \( y\) Cartesian coordinates of points p and q lexicographically.
|
|
template<typename Kernel > |
Comparison_result | compare_x_at_y (const CGAL::Point_2< Kernel > &p, const CGAL::Line_2< Kernel > &h) |
| compares the \( x\)-coordinates of p and the horizontal projection of p on h . More...
|
|
template<typename Kernel > |
Comparison_result | compare_x_at_y (const CGAL::Point_2< Kernel > &p, const CGAL::Line_2< Kernel > &h1, const CGAL::Line_2< Kernel > &h2) |
| This function compares the \( x\)-coordinates of the horizontal projection of p on h1 and on h2 . More...
|
|
template<typename Kernel > |
Comparison_result | compare_x_at_y (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2, const CGAL::Line_2< Kernel > &h) |
| Let p be the intersection of lines l1 and l2 . More...
|
|
template<typename Kernel > |
Comparison_result | compare_x_at_y (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2, const CGAL::Line_2< Kernel > &h1, const CGAL::Line_2< Kernel > &h2) |
| Let p be the intersection of lines l1 and l2 . More...
|
|
template<typename Kernel > |
Comparison_result | compare_y_at_x (const CGAL::Point_2< Kernel > &p, const CGAL::Line_2< Kernel > &h) |
| compares the \( y\)-coordinates of p and the vertical projection of p on h . More...
|
|
template<typename Kernel > |
Comparison_result | compare_y_at_x (const CGAL::Point_2< Kernel > &p, const CGAL::Line_2< Kernel > &h1, const CGAL::Line_2< Kernel > &h2) |
| compares the \( y\)-coordinates of the vertical projection of p on h1 and on h2 . More...
|
|
template<typename Kernel > |
Comparison_result | compare_y_at_x (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2, const CGAL::Line_2< Kernel > &h) |
| Let p be the intersection of lines l1 and l2 . More...
|
|
template<typename Kernel > |
Comparison_result | compare_y_at_x (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2, const CGAL::Line_2< Kernel > &h1, const CGAL::Line_2< Kernel > &h2) |
| Let p be the intersection of lines l1 and l2 . More...
|
|
template<typename Kernel > |
Comparison_result | compare_y_at_x (const CGAL::Point_2< Kernel > &p, const CGAL::Segment_2< Kernel > &s) |
| compares the \( y\)-coordinates of p and the vertical projection of p on s . More...
|
|
template<typename Kernel > |
Comparison_result | compare_y_at_x (const CGAL::Point_2< Kernel > &p, const CGAL::Segment_2< Kernel > &s1, const CGAL::Segment_2< Kernel > &s2) |
| compares the \( y\)-coordinates of the vertical projection of p on s1 and on s2 . More...
|
|
template<typename Kernel > |
Comparison_result | compare_y (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| compares Cartesian \( y\)-coordinates of p and q .
|
|
template<typename Kernel > |
Comparison_result | compare_y (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| compares Cartesian \( y\)-coordinates of p and q .
|
|
template<typename Kernel > |
Comparison_result | compare_y (const CGAL::Point_2< Kernel > &p, const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2) |
| compares the \( y\)-coordinates of p and the intersection of lines l1 and l2 . More...
|
|
template<typename Kernel > |
Comparison_result | compare_y (const CGAL::Line_2< Kernel > &l, const CGAL::Line_2< Kernel > &h1, const CGAL::Line_2< Kernel > &h2) |
| compares the \( y\)-coordinates of the intersection of line l with line h1 and with line h2 . More...
|
|
template<typename Kernel > |
Comparison_result | compare_y (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2, const CGAL::Line_2< Kernel > &h1, const CGAL::Line_2< Kernel > &h2) |
| compares the \( y\)-coordinates of the intersection of lines l1 and l2 and the intersection of lines h1 and h2 . More...
|
|
template<typename CircularKernel > |
Comparison_result | compare_y (const CGAL::Circular_arc_point_2< CircularKernel > &p, const CGAL::Circular_arc_point_2< CircularKernel > &q) |
| compares the \( y\)-coordinates of p and q .
|
|
template<typename CircularKernel > |
Comparison_result | compare_y (const CGAL::Circular_arc_point_2< CircularKernel > &p, const CGAL::Point_2< CircularKernel > &q) |
| compares the \( y\)-coordinates of p and q .
|
|
template<typename SphericalKernel > |
Comparison_result | compare_y (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Circular_arc_point_3< SphericalKernel > &q) |
| compares the \( y\)-coordinates of p and q .
|
|
template<typename SphericalKernel > |
Comparison_result | compare_y (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Point_3< SphericalKernel > &q) |
| compares the \( y\)-coordinates of p and q .
|
|
template<typename Kernel > |
Comparison_result | compare_xyz (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| Compares the Cartesian coordinates of points p and q lexicographically in \( xyz\) order: first \( x\)-coordinates are compared, if they are equal, \( y\)-coordinates are compared, and if both \( x\)- and \( y\)- coordinate are equal, \( z\)-coordinates are compared.
|
|
template<typename SphericalKernel > |
Comparison_result | compare_xyz (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Circular_arc_point_3< SphericalKernel > &q) |
| Compares the Cartesian coordinates of points p and q lexicographically.
|
|
template<typename SphericalKernel > |
Comparison_result | compare_xyz (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Point_3< SphericalKernel > &q) |
| Compares the Cartesian coordinates of points p and q lexicographically.
|
|
template<typename Kernel > |
Comparison_result | compare_z (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| compares the \( z\)-coordinates of p and q .
|
|
template<typename SphericalKernel > |
Comparison_result | compare_z (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Circular_arc_point_3< SphericalKernel > &q) |
| compares the \( z\)-coordinates of p and q .
|
|
template<typename SphericalKernel > |
Comparison_result | compare_z (const CGAL::Circular_arc_point_3< SphericalKernel > &p, const CGAL::Point_3< SphericalKernel > &q) |
| compares the \( z\)-coordinates of p and q .
|
|
template<typename Kernel > |
Comparison_result | compare_yx (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| Compares the Cartesian coordinates of points p and q lexicographically in \( yx\) order: first \( y\)-coordinates are compared, if they are equal, \( x\)-coordinates are compared.
|
|
template<typename Kernel > |
bool | coplanar (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
| returns true , if p , q , r , and s are coplanar.
|
|
template<typename Kernel > |
Orientation | coplanar_orientation (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
| Let P be the plane defined by the points p , q , and r . More...
|
|
template<typename Kernel > |
Orientation | coplanar_orientation (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| If p,q,r are collinear, then CGAL::COLLINEAR is returned. More...
|
|
template<typename Kernel > |
Bounded_side | coplanar_side_of_bounded_circle (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
| returns the bounded side of the circle defined by p , q , and r on which s lies. More...
|
|
template<typename Kernel > |
CGAL::Vector_3< Kernel > | cross_product (const CGAL::Vector_3< Kernel > &u, const CGAL::Vector_3< Kernel > &v) |
| returns the cross product of u and v .
|
|
template<typename Kernel > |
Kernel::FT | determinant (const CGAL::Vector_2< Kernel > &v, const CGAL::Vector_2< Kernel > &w) |
| returns the determinant of v and w .
|
|
template<typename Kernel > |
Kernel::FT | determinant (const CGAL::Vector_3< Kernel > &u, const CGAL::Vector_3< Kernel > &v, const CGAL::Vector_3< Kernel > &w) |
| returns the determinant of u , v and w .
|
|
template<typename Kernel > |
CGAL::Line_3< Kernel > | equidistant_line (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| constructs the line which is at the same distance from the three points p , q and r . More...
|
|
template<typename Kernel > |
bool | has_larger_distance_to_point (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
| returns true iff the distance between q and p is larger than the distance between r and p .
|
|
template<typename Kernel > |
bool | has_larger_distance_to_point (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| returns true iff the distance between q and p is larger than the distance between r and p .
|
|
template<typename Kernel > |
bool | has_larger_signed_distance_to_line (const CGAL::Line_2< Kernel > &l, const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| returns true iff the signed distance of p and l is larger than the signed distance of q and l .
|
|
template<typename Kernel > |
bool | has_larger_signed_distance_to_line (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &s) |
| returns true iff the signed distance of r and l is larger than the signed distance of s and l , where l is the directed line through points p and q .
|
|
template<typename Kernel > |
bool | has_larger_signed_distance_to_plane (const CGAL::Plane_3< Kernel > &h, const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| returns true iff the signed distance of p and h is larger than the signed distance of q and h .
|
|
template<typename Kernel > |
bool | has_larger_signed_distance_to_plane (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s, const CGAL::Point_3< Kernel > &t) |
| returns true iff the signed distance of s and h is larger than the signed distance of t and h , where h is the oriented plane through p , q and r .
|
|
template<typename Kernel > |
bool | has_smaller_distance_to_point (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
| returns true iff the distance between q and p is smaller than the distance between r and p .
|
|
template<typename Kernel > |
bool | has_smaller_distance_to_point (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| returns true iff the distance between q and p is smaller than the distance between r and p .
|
|
template<typename Kernel > |
bool | has_smaller_signed_distance_to_line (const CGAL::Line_2< Kernel > &l, const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| returns true iff the signed distance of p and l is smaller than the signed distance of q and l .
|
|
template<typename Kernel > |
bool | has_smaller_signed_distance_to_line (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &s) |
| returns true iff the signed distance of r and l is smaller than the signed distance of s and l , where l is the oriented line through p and q .
|
|
template<typename Kernel > |
bool | has_smaller_signed_distance_to_plane (const CGAL::Plane_3< Kernel > &h, const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| returns true iff the signed distance of p and h is smaller than the signed distance of q and h .
|
|
template<typename Kernel > |
bool | has_smaller_signed_distance_to_plane (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s, const CGAL::Point_3< Kernel > &t) |
| returns true iff the signed distance of p and h is smaller than the signed distance of q and h , where h is the oriented plane through p , q and r .
|
|
template<typename Kernel > |
Kernel::FT | l_infinity_distance (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| returns the distance between p and q in the L-infinity metric.
|
|
template<typename Kernel > |
Kernel::FT | l_infinity_distance (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| returns the distance between p and q in the L-infinity metric.
|
|
template<typename Kernel > |
bool | left_turn (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
| returns true iff p , q , and r form a left turn.
|
|
template<typename Kernel > |
bool | lexicographically_xy_larger (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| returns true iff p is lexicographically larger than q with respect to \( xy\) order.
|
|
template<typename Kernel > |
bool | lexicographically_xy_larger_or_equal (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| returns true iff p is lexicographically not smaller than q with respect to \( xy\) order.
|
|
template<typename Kernel > |
bool | lexicographically_xy_smaller (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| returns true iff p is lexicographically smaller than q with respect to \( xy\) order.
|
|
template<typename Kernel > |
bool | lexicographically_xy_smaller_or_equal (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| returns true iff p is lexicographically not larger than q with respect to \( xy\) order.
|
|
template<typename Kernel > |
bool | lexicographically_xyz_smaller (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| returns true iff p is lexicographically smaller than q with respect to \( xyz\) order.
|
|
template<typename Kernel > |
bool | lexicographically_xyz_smaller_or_equal (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| returns true iff p is lexicographically not larger than q with respect to \( xyz\) order.
|
|
template<typename Kernel > |
CGAL::Point_2< Kernel > | max_vertex (const CGAL::Iso_rectangle_2< Kernel > &ir) |
| computes the vertex with the lexicographically largest coordinates of the iso rectangle ir .
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | max_vertex (const CGAL::Iso_cuboid_3< Kernel > &ic) |
| computes the vertex with the lexicographically largest coordinates of the iso cuboid ic .
|
|
template<typename Kernel > |
CGAL::Point_2< Kernel > | midpoint (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| computes the midpoint of the segment pq .
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | midpoint (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| computes the midpoint of the segment pq .
|
|
template<typename Kernel > |
CGAL::Point_2< Kernel > | min_vertex (const CGAL::Iso_rectangle_2< Kernel > &ir) |
| computes the vertex with the lexicographically smallest coordinates of the iso rectangle ir .
|
|
template<typename Kernel > |
CGAL::Point_3< Kernel > | min_vertex (const CGAL::Iso_cuboid_3< Kernel > &ic) |
| computes the vertex with the lexicographically smallest coordinates of the iso cuboid ic .
|
|
template<typename Kernel > |
CGAL::Vector_3< Kernel > | normal (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| computes the normal vector for the vectors q-p and r-p . More...
|
|
template<typename Kernel > |
Orientation | orientation (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
| returns CGAL::LEFT_TURN , if r lies to the left of the oriented line l defined by p and q , returns CGAL::RIGHT_TURN if r lies to the right of l , and returns CGAL::COLLINEAR if r lies on l .
|
|
template<typename Kernel > |
Orientation | orientation (const CGAL::Vector_2< Kernel > &u, const CGAL::Vector_2< Kernel > &v) |
| returns CGAL::LEFT_TURN if u and v form a left turn, returns CGAL::RIGHT_TURN if u and v form a right turn, and returns CGAL::COLLINEAR if u and v are collinear.
|
|
template<typename Kernel > |
Orientation | orientation (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
| returns CGAL::POSITIVE , if s lies on the positive side of the oriented plane h defined by p , q , and r , returns CGAL::NEGATIVE if s lies on the negative side of h , and returns CGAL::COPLANAR if s lies on h .
|
|
template<typename Kernel > |
Orientation | orientation (const CGAL::Vector_3< Kernel > &u, const CGAL::Vector_3< Kernel > &v, const CGAL::Vector_3< Kernel > &w) |
| returns CGAL::NEGATIVE if u , v and w are negatively oriented, CGAL::POSITIVE if u , v and w are positively oriented, and CGAL::COPLANAR if u , v and w are coplanar.
|
|
template<typename Kernel > |
CGAL::Vector_3< Kernel > | orthogonal_vector (const CGAL::Plane_3< Kernel > &p) |
| computes an orthogonal vector of the plane p , which is directed to the positive side of this plane.
|
|
template<typename Kernel > |
CGAL::Vector_3< Kernel > | orthogonal_vector (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| computes an orthogonal vector of the plane defined by p , q and r , which is directed to the positive side of this plane.
|
|
template<typename Kernel > |
bool | parallel (const CGAL::Line_2< Kernel > &l1, const CGAL::Line_2< Kernel > &l2) |
| returns true , if l1 and l2 are parallel or if one of those (or both) is degenerate.
|
|
template<typename Kernel > |
bool | parallel (const CGAL::Ray_2< Kernel > &r1, const CGAL::Ray_2< Kernel > &r2) |
| returns true , if r1 and r2 are parallel or if one of those (or both) is degenerate.
|
|
template<typename Kernel > |
bool | parallel (const CGAL::Segment_2< Kernel > &s1, const CGAL::Segment_2< Kernel > &s2) |
| returns true , if s1 and s2 are parallel or if one of those (or both) is degenerate.
|
|
template<typename Kernel > |
bool | parallel (const CGAL::Line_3< Kernel > &l1, const CGAL::Line_3< Kernel > &l2) |
| returns true , if l1 and l2 are parallel or if one of those (or both) is degenerate.
|
|
template<typename Kernel > |
bool | parallel (const CGAL::Plane_3< Kernel > &h1, const CGAL::Plane_3< Kernel > &h2) |
| returns true , if h1 and h2 are parallel or if one of those (or both) is degenerate.
|
|
template<typename Kernel > |
bool | parallel (const CGAL::Ray_3< Kernel > &r1, const CGAL::Ray_3< Kernel > &r2) |
| returns true , if r1 and r2 are parallel or if one of those (or both) is degenerate.
|
|
template<typename Kernel > |
bool | parallel (const CGAL::Segment_3< Kernel > &s1, const CGAL::Segment_3< Kernel > &s2) |
| returns true , if s1 and s2 are parallel or if one of those (or both) is degenerate.
|
|
CGAL::Plane_3< Kernel > | radical_plane (const CGAL::Sphere_3< Kernel > &s1, const CGAL::Sphere_3< Kernel > &s2) |
| returns the radical plane of the two spheres. More...
|
|
template<typename Kernel > |
CGAL::Line_2< Kernel > | radical_line (const CGAL::Circle_2< Kernel > &c1, const CGAL::Circle_2< Kernel > &c2) |
| returns the radical line of the two circles. More...
|
|
template<typename Kernel > |
bool | right_turn (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
| returns true iff p , q , and r form a right turn.
|
|
template<typename Kernel > |
Kernel::FT | scalar_product (const CGAL::Vector_2< Kernel > &u, const CGAL::Vector_2< Kernel > &v) |
| returns the scalar product of u and v .
|
|
template<typename Kernel > |
Kernel::FT | scalar_product (const CGAL::Vector_3< Kernel > &u, const CGAL::Vector_3< Kernel > &v) |
| returns the scalar product of u and v .
|
|
template<typename Kernel > |
Bounded_side | side_of_bounded_circle (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &t) |
| returns the relative position of point t to the circle defined by p , q and r . More...
|
|
template<typename Kernel > |
Bounded_side | side_of_bounded_circle (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &t) |
| returns the position of the point t relative to the circle that has pq as its diameter.
|
|
template<typename Kernel > |
Bounded_side | side_of_bounded_sphere (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s, const CGAL::Point_3< Kernel > &t) |
| returns the relative position of point t to the sphere defined by p , q , r , and s . More...
|
|
template<typename Kernel > |
Bounded_side | side_of_bounded_sphere (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &t) |
| returns the position of the point t relative to the sphere passing through p , q , and r and whose center is in the plane defined by these three points.
|
|
template<typename Kernel > |
Bounded_side | side_of_bounded_sphere (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &t) |
| returns the position of the point t relative to the sphere that has pq as its diameter.
|
|
template<typename Kernel > |
Oriented_side | side_of_oriented_circle (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &test) |
| returns the relative position of point test to the oriented circle defined by p , q and r . More...
|
|
template<typename Kernel > |
Oriented_side | side_of_oriented_sphere (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s, const CGAL::Point_3< Kernel > &test) |
| returns the relative position of point test to the oriented sphere defined by p , q , r and s . More...
|
|
template<typename Kernel > |
Kernel::FT | squared_area (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| returns the squared area of the triangle defined by the points p , q and r .
|
|
template<typename Kernel > |
FT | squared_radius (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r) |
| compute the squared radius of the circle passing through the points p , q , and r . More...
|
|
template<typename Kernel > |
FT | squared_radius (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| compute the squared radius of the smallest circle passing through p , and q , i.e. one fourth of the squared distance between p and q .
|
|
template<typename Kernel > |
FT | squared_radius (const CGAL::Point_2< Kernel > &p) |
| compute the squared radius of the smallest circle passing through p , i.e. \( 0\).
|
|
template<typename Kernel > |
FT | squared_radius (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r, const CGAL::Point_3< Kernel > &s) |
| compute the squared radius of the sphere passing through the points p , q , r and s . More...
|
|
template<typename Kernel > |
FT | squared_radius (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| compute the squared radius of the sphere passing through the points p , q , and r and whose center is in the same plane as those three points.
|
|
template<typename Kernel > |
FT | squared_radius (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| compute the squared radius of the smallest circle passing through p , and q , i.e. one fourth of the squared distance between p and q .
|
|
template<typename Kernel > |
FT | squared_radius (const CGAL::Point_3< Kernel > &p) |
| compute the squared radius of the smallest circle passing through p , i.e. \( 0\).
|
|
CGAL::Vector_3< Kernel > | unit_normal (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q, const CGAL::Point_3< Kernel > &r) |
| computes the unit normal vector for the vectors q-p and r-p . More...
|
|
template<typename Kernel > |
Kernel::FT | volume (const CGAL::Point_3< Kernel > &p0, const CGAL::Point_3< Kernel > &p1, const CGAL::Point_3< Kernel > &p2, const CGAL::Point_3< Kernel > &p3) |
| Computes the signed volume of the tetrahedron defined by the four points p0 , p1 , p2 and p3 .
|
|
template<typename Kernel > |
bool | x_equal (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| returns true , iff p and q have the same x -coordinate.
|
|
template<typename Kernel > |
bool | x_equal (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| returns true , iff p and q have the same x -coordinate.
|
|
template<typename Kernel > |
bool | y_equal (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q) |
| returns true , iff p and q have the same y -coordinate.
|
|
template<typename Kernel > |
bool | y_equal (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| returns true , iff p and q have the same y -coordinate.
|
|
template<typename Kernel > |
bool | z_equal (const CGAL::Point_3< Kernel > &p, const CGAL::Point_3< Kernel > &q) |
| returns true , iff p and q have the same z -coordinate.
|
|
template<RingNumberType > |
void | rational_rotation_approximation (const RingNumberType &dirx, const RingNumberType &diry, RingNumberType &sin_num, RingNumberType &cos_num, RingNumberType &denom, const RingNumberType &eps_num, const RingNumberType &eps_den) |
| computes integers sin_num , cos_num and denom , such that sin_num /denom approximates the sine of direction \( (\)dirx ,diry \( )\). More...
|
|
template<typename Kernel > |
Kernel::FT | squared_distance (Type1< Kernel > obj1, Type2< Kernel > obj2) |
| computes the square of the Euclidean distance between two geometric objects. More...
|
|